
Rosely Documentation

John Volk

Mar 11, 2021

Contents

1 Installation 3

2 Tutorial 5
2.1 Read input data . 5
2.2 Create a WindRose instance . 6
2.3 Calculate wind statistics . 6
2.4 Generate wind rose diagrams . 7
2.5 Easy wind rose customizations . 8

3 API Reference 11
3.1 Module contents . 11
3.2 WindRose class . 11

4 Indices and tables 15

Python Module Index 17

Index 19

i

ii

Rosely Documentation

Interactive wind rose diagrams made easy using plotly and pandas

View on GitHub

Contents 1

https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://github.com/JohnVolk/Rosely

Rosely Documentation

2 Contents

CHAPTER 1

Installation

Rosely’s dependencies are Python 3.4+, NumPy, pandas, and Plotly.

You may install the dependencies using the conda virtual environment (recommended), the environment file can be
downloaded here and installed and activated by

conda env create -f environment.yml
conda activate rosely

Once activated install with PIP:

pip install rosely

If all went well you should be able to import

>>> from rosely import WindRose

3

https://raw.githubusercontent.com/JohnVolk/Rosely/master/environment.yml

Rosely Documentation

4 Chapter 1. Installation

CHAPTER 2

Tutorial

This tutorial covers basic usage of the Rosely package including loading of data, calculatiion of wind statistics, and
wind rose plotting customizations.

>>> import pandas as pd
>>> import plotly.express as px
>>> from rosely import WindRose

2.1 Read input data

rosely requires wind data to first be loaded into a pandas.DataFrame object, also wind direction should be in
degrees, i.e. in [0, 360].

The example data used in this tutorial is a modified version of 30 minute data that was originally from the “Twitchell
Alfalfa” AmeriFlux eddy covariance flux tower site in the Sacramento–San Joaquin River Delta in California. The site
is located in alfalfa fields and exhibits a mild Mediterranean climate with dry and hot summers, for more information
on this site click here.

The data used for this example can be downloaded on the Rosely GitHub repositor here. And a Jupyter Notebook of
this tutorial is available here.

>>> df = pd.read_csv('test_data.csv', index_col='date', parse_dates=True)
>>> df[['ws','wd']].head()

Or another view of the summary statistics of wind data

>>> df[['ws','wd']].describe()

5

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://ameriflux.lbl.gov/sites/siteinfo/US-Tw3
https://raw.githubusercontent.com/JohnVolk/Rosely/master/example/test_data.csv
https://github.com/JohnVolk/Rosely/blob/master/example/tutorial.ipynb

Rosely Documentation

2.2 Create a WindRose instance

Using the loaded wind speed and direction data within a pandas.DataFrame we can initialize a rosely.
WindRose object which provides simple methods for generating interactive wind rose diagrams.

>>> WR = WindRose(df)

Alternatively the dataframe can be later assigned to a WindRose object,

>>> WR = WindRose()
>>> WR.df = df

2.3 Calculate wind statistics

A wind rose diagram is essentially a stacked histogram that is binned by wind speed and freqeuncy for a set of
wind directions. These calculations are accomplished by the WindRose.calc_stats() method which allows for
changing the number of default wind speed bins (equally spaced) and whether or not the frequency is normalized to
sum to 100 or it is just the actual frequency of wind occurences (counts) in a certain direction and speed bin.

By default the freqeuncy is normalized and the number of wind speed bins is 9:

>>> WR.calc_stats()

To view the results of the wind statistics that will be used for the wind rose later, view the WindRose.wind_df
which is created after running WindRose.calc_stats():

>>> # view all statistics for winds coming from the North
>>> WR.wind_df.loc[WR.wind_df.direction=='N']

Note: The winds speed bins in a certain direction may appear to be duplicated above but they are not, what is
happening is that WindRose.calc_stats() bins each direction on a 16 point compass twice for 11.25 degrees
sections on both sides of the compass azimuth. So for North there are two internal azimuth bins: from 348.75-360
degrees and from 0-11.25 degrees. If you wanted to see the summed Northerly winds frequencies within the 9 speed
bins you could run:

>>> WR.wind_df.groupby(['direction','speed']).sum().loc['N']

Here is an example of not normalizing the freqeuncy (using raw counts instead) and using 6 instead of 9 bins for speed.
This example shows the same grouped output for Northerly winds,

>>> WR.calc_stats(normed=False, bins=6)
>>> WR.wind_df.groupby(['direction','speed']).sum().loc['N']

Lastly, if the wind speed and wind direction columns in the dataframe assigned to the WindRose object are not named
‘ws’ and ‘wd’ respectively, instead of renaming them ahead of time or inplace, you may pass a dictionary that maps
their names to the WindRose.calc_stats() method. For example, lets purposely change the names in our input
dataframe to ‘wind_speed’ and ‘direction’:

>>> tmp_df = df[['ws','wd']]
>>> tmp_df.columns = ['wind_speed', 'direction']
>>> tmp_df.head()

6 Chapter 2. Tutorial

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Rosely Documentation

Now reassign this differently named dataframe to a WindRose instance to demonstrate

>>> WR.df = tmp_df
>>> # create renaming dictionary
>>> names = {
>>> 'wind_speed':'ws',
>>> 'direction': 'wd'
>>> }
>>> WR.calc_stats(normed=False, bins=6, variable_names=names)
>>> WR.wind_df.groupby(['direction','speed']).sum().loc['N']

The same results were achieved as above, however the column names used for initial assignment are retained by the
WindRose.df property:

>>> WR.df.head()

Tip: In this tutorial the full dataset of 30 minute windspeed was used to create the statistics (above) and the diagrams
(below), in practice it may be important to view wind speed / direction during certain time periods like day or night,
or summer/winter seasons. This is one of the main reasons for using pandas.DataFrame objects- they have many
tools for time series analysis, particularly temporal aggregation and resampling. If you wanted to view the wind
statistics/plot for this site during day times defined (not quite accurately) as 8:00 AM to 8:00 PM it is as simple as this:

>>> # reassign the wind data but sliced just for day hours we want
>>> WR.df = df[['ws','wd']].between_time('8:00', '16:00')
>>> # calculate the wind statistics again
>>> WR.calc_stats(normed=False, bins=6)
>>> WR.wind_df.groupby(['direction','speed']).sum().loc['N']

2.4 Generate wind rose diagrams

The main purpose of rosely is to simplyfy the generation of beautiful, interactive wind rose diagrams by using
plotly.express.bar_polar charts and pandas. Once a WindRose object has been created and has been
assigned a pandas.DataFrame with wind speed and wind direction you can skip calculating statistics (falls back
on default parameters for statistics) and jump right to creating a wind rose diagram. For example:

>>> # create a new WindRose object from our example data with 'ws' and 'wd' columns
>>> WR = WindRose(df)
>>> WR.plot()

Wind speed and direction statistics have not been calculated, Calculating them
→˓now using default parameters.

The two lines above saved the plot with default parameters (9 speed bins) normalized frequency, and default rosely
color schemes to the current working directory named ‘windrose.html’.

To view the default plot without saving,

>>> # try zooming, clicking on legend, etc.
>>> WR.plot(output_type='show')

Notice that these plots used the default statistics parameters, to use other options be sure to call WindRose.
calc_stats() before WindRose.plot(). E.g. if we wanted 6 equally spaced bins with freqeuncies represented
as counts as opposed to percentages,

2.4. Generate wind rose diagrams 7

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Rosely Documentation

>>> WR.calc_stats(normed=False, bins=6)
>>> WR.plot(output_type='show')

Hint: Assign the path to save the output file if output_type = ‘save’ using the out_file keyword argument.

The third option that can be assigned to output_type other than ‘save’ and ‘show’ is ‘return’. When
output_type='return the WindRose.plot() method returns the plot figure for further modification or inte-
gration in other workflows like adding it into a group of subplots.

Here is an example use of the ‘return’ option that modifies the wind rose after it’s creation by rosely by changing
the background color and margins:

2.5 Easy wind rose customizations

rosely makes it simple to experiment with different wind rose statistcs options but also plot color schemes, this
section of the tutorial highlights some useful options to the WindRose.plot() method for doing the latter.

First off there are three important keyword arguments to WindRose.plot() that control the color schemes
(colors, template, and colors_reversed):

1. colors is the name of the Plotly sequential color swatch or a list of your own RGB or Hex colors to passfor
the stacked histograms (the first color in the list will be the most inner color on the diagram and them moving
outwards towards higher wind speeds).

2. template, this is the name of the Plotly template that defines the background color and other visual ap-
pearences. You may also pass a custom Plotly.py template object.

3. colors_reversed simply allows for the automatic reversal of color sequences which may be useful because
some color swatches range from light to dark while others range from dark to light tones.

A list of all provided colors (hint hover over them to view the Hex or RGB values themselves):

As for templates they are easily listed by the following:

>>> import plotly.io as pio
>>> pio.templates

Templates configuration

Default template: 'plotly'
Available templates:

['ggplot2', 'seaborn', 'plotly', 'plotly_white', 'plotly_dark',
'presentation', 'xgridoff', 'none']

Now, let’s try out some of these colors and templates!

>>> WR.plot(output_type='show', template='seaborn', colors='Plotly3', width=600,
→˓height=600)

Some color swatches may look better without colors reversed,

>>> WR.plot(output_type='show', template='xgridoff', colors='turbid', colors_
→˓reversed=False)

This final example not only shows different color schemes but that you can pass additional useful keyword arguments
that are accepted by plotly.express.bar_polar such as title, and width to WindRose.plot(). It

8 Chapter 2. Tutorial

Rosely Documentation

also demonstrates that HTML can be embedded into the plot title and an example of prefiltering the wind time series
to before calculating wind statistics, in this case to create a wind rose for the winter months only.

>>> # reassign the wind data but sliced just for Dec-Mar
>>> WR.df = df[['ws','wd']].loc[df.index.month.isin([12,1,2,3])]
>>> # calculate the wind statistics (only necessary because not using default n bins)
>>> WR.calc_stats(normed=True, bins=6)
>>> WR.plot(
>>> output_type='show',
>>> colors='Greens',
>>> template='plotly_dark',
>>> colors_reversed=False,
>>> width=600,
>>> height=600,
>>> title='Eddy Flux Site on Twitchell Island, CA
Wind measured Dec-Mar
<a
→˓href="https://ameriflux.lbl.gov/sites/siteinfo/US-Tw3">Visit site'
>>>)

As we can see the winter wind system is substantially different from the average long-term wind which may be
expected due to seasonal storm systems or temporally varying larger scale atmospheric circulations.

2.5. Easy wind rose customizations 9

Rosely Documentation

10 Chapter 2. Tutorial

CHAPTER 3

API Reference

This page documents objects and methods provided by Rosely.

3.1 Module contents

A small package for efficiently generating customizable and interactive wind rose diagrams. Once wind speed and
direction is loaded into a pandas.DataFrame the package can create wind speed and direction statistics which are
used to create windrose diagrams via Plotly’s polar bar chart function with multiple tools for easy plot customiza-
tion.

3.2 WindRose class

class rosely.WindRose(df=None)
Bases: object

Manage data for calculating wind statistics and provide simple interface for creating customizable wind rose
diagrams.

df
arbitrary pandas.DataFrame that is assigned to a WindRose object that must contain wind speed and
direction columns before using other WindRose methods.

Type pandas.DataFrame

theta_labels
16 point compass labels for wind rose diagrams.

Type list

theta_angles
array of 11.25 degree intervals for 16 point compass.

Type numpy.ndarray

11

https://docs.python.org/3/library/functions.html#object
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Rosely Documentation

wind_df
calculated wind statistics produced by WindRose.calc_stats() and used by WindRose.plot().

Type pandas.DataFrame

calc_stats(normed=True, bins=9, variable_names=None)
Calculate wind speed and direction bins needed for generating wind rose diagrams.

After running WindRose.calc_stats() with different options a new instance attribute WindRose.
wind_df is generated that contains the binned wind speed statistics. This attribute is in the form of a
pandas.DataFrame and can be used to create a histogram or saved to disk.

Keyword Arguments

• normed (bool) – default True. If True compute wind speed/direction frequency bins
that are normalized to sum to 100. If False frequency bins are counts of occurences of
wind speed/direction.

• bins (int or list) – default 9. Number of wind speed and direction bins to calcu-
late. 9 is used because most plotly color sequences are lenght 9 or 10 which are later
used by WindRose.plot()

• variable_names (None or dict) – default None. If none the wind speed and wind
direction columns in WindRose.df should be named ‘ws’ and ‘wd’ respectively. Oth-
erwise a dictionary that maps the respective columns to ‘ws’ and ‘wd’ should be provided.

Returns None

Example

Assuming you have a pandas.DataFrame loaded that has wind speed and direction columns titled
‘wind_speed’ and ‘wind_direction’ and the dataframe is named df:

>>> from rosely import WindRose
>>> WR = WindRose(df)
>>> names = {'wind_speed':'ws', 'wind_direction':'wd'}
>>> WR.calc_stats(normed=False, bins=8, variable_names=names)

Now WR.wind_df should have the appropirate statistics and the WindRose.plot() will use these
statistics for the polar stacked histogram (wind rose).

df
pandas.DataFrame containing input time series wind data needed to run WindRose.plot().

plot(output_type=’save’, out_file=None, colors=’Plasma’, template=’plotly_dark’, col-
ors_reversed=True, **kwargs)

Create interactive wind rose diagrams with easily customizable options using Plotly’s polar bar chart.

Keyword Arguments

• output_type (str) – default ‘save’. If ‘save’ save graph to out_file. Other op-
tions: ‘show’ will show in a new tab in web browser or within a Jupyter Notebook, and
‘return’ will return the plotly figure for further manual customization/modification or use
in custom workflows like saving as a subplot with other plot figures.

• out_file (None or str) – default None. If output_type='save' then save to
specified path, if None save to current working directory as “windrose.html”.

• colors (str) – default ‘Plasma’. Name of Plotly color swatch or sequence to use for
coloring bins from center outward on wind rose. See Tutorial for examples and all options.
Can also pass a list of hex or rgb colors of your own.

12 Chapter 3. API Reference

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Rosely Documentation

• template (str) – default ‘plotly_dark’. Name of Plotly template for background
theme/colors on wind rose.

• colors_reversed (bool) – True. If True reverse the colors in colors. The first
color in the sequence will be used for the lightest wind speed bin.

• **kwargs – other keyword arguments are passed to the plotly.express.
bar_polar plot function, e.g. title or width.

Returns (None or plotly.graph_objects.Figure)

Example

Assuming a pandas.DataFrame object called “df” has been loaded and contains columns ‘ws’ and
‘wd’ with wind speed and direction,

>>> from rosely import WindRose
>>> WR = WindRose(df) # df already loaded pandas dataframe
>>> # if you skip running WR.calc_stats the defaults will be used
>>> WR.plot(output_type='show', colors='Greens',
>>> colors_reversed=False)

This will produced a normalized frequency wind rose (frequency 0-100 percent) with 9 bins. To specify
the to use count frequency or a different number of bins use the WindRose.calc_stats() method
before running WindRose.plot().

Tip: To see a list of all provided color sequences provided by Plotly,

>>> import plotly.express as px
>>> px.colors.sequential.swatches()

All of the listed color schemes can be passed to the colors arugment of WindRose.plot().

theta_angles
Used by autodoc_mock_imports.

theta_labels = ['N', 'NNE', 'NNE', 'NE', 'NE', 'ENE', 'ENE', 'E', 'E', 'ESE', 'ESE', 'SE', 'SE', 'SSE', 'SSE', 'S', 'S', 'SSW', 'SSW', 'SW', 'SW', 'WSW', 'WSW', 'W', 'W', 'WNW', 'WNW', 'NW', 'NW', 'NNW', 'NNW', 'N']

3.2. WindRose class 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Rosely Documentation

14 Chapter 3. API Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

15

Rosely Documentation

16 Chapter 4. Indices and tables

Python Module Index

r
rosely, 11

17

Rosely Documentation

18 Python Module Index

Index

C
calc_stats() (rosely.WindRose method), 12

D
df (rosely.WindRose attribute), 11, 12

P
plot() (rosely.WindRose method), 12

R
rosely (module), 11

T
theta_angles (rosely.WindRose attribute), 11, 13
theta_labels (rosely.WindRose attribute), 11, 13

W
wind_df (rosely.WindRose attribute), 11
WindRose (class in rosely), 11

19

	Installation
	Tutorial
	Read input data
	Create a WindRose instance
	Calculate wind statistics
	Generate wind rose diagrams
	Easy wind rose customizations

	API Reference
	Module contents
	WindRose class

	Indices and tables
	Python Module Index
	Index

